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Several arguments are given leading to the sufficient and necessary condition for spontaneous symme-
try breaking at a finite temperature on fractals, which is d > 2 for discrete symmetry and d >d,, +1 for
continuous symmetry, where d, d, and d,, are, respectively, the spectral dimensionality, fractal dimen-
sionality, and dimensionality of the random walk of this structure. In addition, phase transitions can al-
ways occur at T, >0 on infinitely ramified lattices. Since d <2 for fractals usually studied, T, was always
found to be O on finitely ramified fractals. d =2 can be satisfied by a bifractal, a Cartesian product of two
fractals, hence T, >0 is expected. A Peierls-Griffiths proof is given for an Ising model on an example of
bifractals, the periodic Koch lattice with d =2, showing that T, is indeed finite. A unified picture con-
cerning both fractal and Euclidean lattices is thus obtained.

PACS number(s): 64.60.Ak, 05.50.+q, 75.10.—b, 61.43.Hv

I. INTRODUCTION

It is well known that the dimensionality of space D
plays an important role in phase transitions. The critical
D above which a continuous symmetry is spontaneously
broken at a finite temperature is 2 [1-3]. For a discrete
symmetry such as that of an Ising model a nonzero criti-
cal temperature (7T,) is expected also in two dimensions
[4,5,3]. These results concern translationally invariant
systems. Then, how about non-translationally-invariant
systems, such as fractals [6]?

Naively one expects for phase transitions on fractals
that the above role of D is replaced by the fractal dimen-
sionality d. However, things are not so. It was found by
Gefen and co-workers that Ising models on infinitely
ramified fractals undergo a phase transition at 7,>0
even if its fractal dimensionality is less than 2, while T is
always found to be zero on finitely ramified fractals re-
gardless of their fractal dimensionalities [7]. Here the
concept of ramification comes into play. According to
Ref. [6], the order of ramification (R) involves the cut set
containing the smallest number of points that must be re-
moved in order to disconnect the set S; it involves sepa-
rately the neighborhood of every point in S. If S is a Sier-
pinski gasket, R can be either 3=R_;, or4=R ... Fora
standard Euclidean lattice, R attained on lattice sites is 4
(square), 6 (triangle), or 3 (hexagon). On the other hand,
a Sierpinski carpet is infinitely ramified. It was presented
as a general rule that Ising systems have 7, =0 on finitely
ramified lattices, and T, >0 on infinitely ramified lattices
[7]. We think that this is unsatisfactory, since on the Eu-
clidean lattices T, can be nonzero. Besides, one expects a
unified rule applying on both fractal and Euclidean lat-
tices.

As a matter of fact, phase transitions are governed by
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long-range correlations, i.e., low-frequency modes.
Hence, as pointed out by Dhar [8], the spectral dimen-
sionality d [8,9] should be more relevant to phase transi-
tions than the fractal dimensionality. Recently it was
proved by Cassi that classical O(n) and quantum Heisen-
berg ferromagnetic models cannot have spontaneous
magnetization at any finite temperature if random walks
on the same structure are recursive, i.e., d <2 [9].

In this paper we discuss under what conditions sym-
metries, including discrete and continuous ones, can be
spontaneously broken on fractals. For continuous sym-
metry, a Peierls-Landau-type approach is given in Sec. II
leading to the same result as above, while the Peierls-type
argument in Sec. III leads to a criterion consistent with
but a bit stricter than this. Also in Sec. III, it is shown
for the Ising model that the phase transition occurs at a
finite temperature iff d >2, which reduces to D >2 on
Euclidean lattices. The spectral dimensionalities of frac-
tal lattices usually studied are smaller than 2. It is point-
ed out in Sec. V that d >2 can be satisfied by a class of
self-affine fractal lattices, the so-called bifractal lattices.
The Peierls-type arguments are extended on a bifractal.
In Sec. V we generalize the Peierls-Griffiths proof [4,5,3]
to Ising model on a bifractal lattice with d =2, proving
rigorously that T, is indeed nonzero.

II. PEIERLS-LANDAU-TYPE APPROACH

One way to find out whether an ordered phase can ex-
ist is the so-called Peierls-Landau-type approach, that is,
to see if it is stable against long-wavelength fluctuations
[3]. Consider a lattice and let u(x) be a displacement
vector, which gives the deviation from equilibrium. u (x)
can be decomposed into normal modes, the number of
which is determined by d [9]. The energy residing in a
normal mode is given by

E,=1o*(k)lg(k)|?, (1

where g (k) is the Fourier transform of u(x). By the
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equipartition of energy, the average value of E; is es-
timated to be kzT. Hence the mean-square amplitude of
a normal mode is

2kpT
(lg(k)*) = : (2)
9D =50
Therefore the mean-square excitation is
2kyT
(u?)= [ (dk) : (3)
u f wZ(k)

Phase transitions are dominated by low-frequency modes
(Goldstone excitations). In this region, it is expected for
elastic vibration that o ~ k. Thus the integral (3) behaves
near the lower limit like f dk k73, which converges
only if d >2. This means that the spatial order will be
destroyed by long-wavelength fluctuations in lattices with
d <2. Similarly, spontaneous magnetization cannot hap-
pen in a continuous media with d <2, because the mag-
netic order would have been destroyed by spin waves.
This result is just what Cassi proved [10]. This condition
is expected to be relaxed for a discrete symmetry, as
shown below.

III. PEIERLS-TYPE ARGUMENT

Another approach to this problem is the so-called
Peierls-type argument, that is, to examine whether long-
range order is stable against the formation of domain
walls, the boundaries between regions with different
values of order parameter [4,5,3]. Here we present a gen-
eralization of it applicable to both fractal and Euclidean
lattices.

First we consider Ising model on a lattice whose fractal
dimensionality is d. At zero temperature, the interac-
tions tend to order the spins, thus the ground state is in a
definite ferromagnetic pure phase. We now examine
whether this state resists the formation at a low but finite
temperature of a domain of opposite spins, which will in-
crease the energy but has some entropy, too; thus the sign
of the free energy is not obvious.

If the linear size of the domain is L, the increase of en-
ergy, which is only due to the spins that interact across
the domain surface, is proportional to L? ' The
domain surface can be made by a random walk on the lat-
tice. One needs ~L “ steps to make a volume of linear

—1
size L, hence L “  steps are needed to make the surface.
Consequently the number of ways in which the domain is

created is proportional to c¢* “ , where c is the chances
of each step of tge rlandom walk. The entropy is thus
proportional to L “ . For the free energy to be positive
at a low temperature, we should have d >d,, or, say,
d=2d /d, > 2, including the marginal case d =2. Hence
this condition is more relaxed than for continuous sym-
metry.

For a system with continuous-order parameter m (x),
the domain wall is of finite thickness, in which m (x)
changes continuously from the value inside to outside.
The energy cost of the domain wall is estimated to be

volume of wall) o
L 2

U= (d0)Vmix)e Lé-1
wall

where the estimate is used that |Vm(x)|>« L ~? and the
thickness of the wall is proportional to L, since L is the
only relevant length. Therefore we may find that, if
d <2, then the equality d —2<d, —1 is satisfied; hence
the entropy favors domain creation, and thus there is no
phase transition at finite temperature. This is just what
Cassi proved [10] and has been shown in the preceding
section. It is interesting to note that d <2 is only the
sufficient but not necessary condition for 7,=0. Com-
paring the energy and entropy, we may find that one
needs only d <d,, +1 to obtain 7, =0. Thus for continu-
ous symmetry to be spontaneously broken at a finite tem-
perature, the condition is d 2d,+1, which is stricter
than d >2. We should point out that this argument is
not rigorous and it is interesting to test and prove this.

If the order of ramification is infinite, the cost of ener-
gy is infinite to create a domain wall. Thus the free ener-
gy cannot be negative and 7. could be nonzero regardless
of the dimensionalities.

IV. BIFRACTALS

For ordinary fractals d <2. This is why T, is always
found to be zero on finitely ramified fractals. It seems
difficult to construct fractal lattices with d >2. Recently
we found that it could be done by making a Cartesian
product of two fractals, and we refer to such a structure
as a “bifractal” [11]. The Cartesian product of two
graphs is defined as follows. Let V(A4) and V(B)
represent the vector sets of graphs A4 and B. If graph Cis
the Cartesian product of 4 and B, then its vertex set
V(C) consists of all pairs (i,j) where i€V (A) and
jE€V(B). Adjacency on C must also be defined. Let (i, ;)
and (k,!) be adjacent on C if either i is adjacent to k on A4
and j=/, or i =k and j is adjacent to / on B. Hence, for
example, the square lattice is a Cartesian product of two
linear chains. On a bifractal, there exists a global spec-
tral dimensionality, which is the sum of those of subfrac-
tals and thus can be =2 [11]. Bifractals represent a class
of self-affine fractals, which have nontrivial global fractal-
ity unlike those characterized by self-affine functions.
For instance, a variety of directed growth models lead to
self-affine aggregates, which could be viewed as the prod-
ucts of self-similar fractals. The typical example is the
directed percolation cluster at criticality, with different
fractal dimensions along and perpendicular to the com-
posed direction [12]. In Fig. 1 we construct an example
of bifractal lattices, the “periodic Koch lattice” (PKL),
which is formed by periodically arrayed Koch curves (on
xy planes) along the direction perpendicular to them (z
direction). Its spectral dimensionality is 2, since that of
the linear chain and the Koch curve are both 1.

Let R, and R, be the linear sizes that a random walker
reaches on the%lt]wo su(lgt:ractals, respectively, after NV steps.

Then N OCR‘d“’ OCI(QIS’" . "I:gl)us the volume it reaches is
~RURG a NN h NG N TR 2 Nd2 here
d;, d\, and d; (i=1,2) are corresponding quantities of
subfractals. Hence the condition that a random walk is
transient is still d > 2. However, some modification are
needed to apply the above Peierls-type argument on a bi-
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FIG. 1. Periodic Koch lattice, with a Cartesian coordinate
system on it.

fractal, where global scaling of random walks is generally
absent.

Now we consider Ising model on a bifractal. Assume
the domain is created by an N-step random walk, the
linear sizes reached are L} and L2, respectively, on the

two subfractals, with Ll"’ °<L2"’ « N. Generally, for a
volume V with sizes L; and L, on the two subspaces, re-
spectively, the area of the surface is proportional to

(V/L,+V/L,). Thus it can be estimated that the
4= 421
entropy is proportional to L ;* +L 4 and the
d +(d,d M /7dP)—1
energy cost is proportlonal to L,

2 (1)
+Ld2+(d 1% /%071 e may find that it still holds that

there is a phase transition in the Ising model at a finite
temperature iff d > 2.

Then we turn to the model with a continuous-order pa-
rameter m (x). In the present situation, there are two
length scales on the two independent subspaces, therefore

|Vm|*~1/L%+1/L3 Consequently the energy cost of

d +(d,dV7d{2)—2
creating the domain wall is thus L, +

dy+(d;dPsd"—2

L, . It can be found that the entropy dom-
inates iff
()
di+—5— d<2> <dy'+1,
w
and (5)
d?
d,+ d“w) <d?+1,

w

which reduces to d <d,+1, where d =d,+d,, when
d\V=d?’=d,. The above inequalities are obviously val-
id when d <2. Still, as in the preceding section, a stricter
constraint is given for T, to be finite in models with con-
tinuous symmetry. The qualitative physical picture
remains unchanged on a bifractal from that on an isotro-
pic fractal.

V. PEIERLS-GRIFFITHS PROOF ON A
BIFRACTAL WITH d =2

In this section, we focus on the Ising model on the
periodic Koch lattice (Fig. 1). Since its spectral dimen-
sionality is 2, according to Sec. III, there is a spontaneous
magnetization below a finite temperature. Now we prove
this rigorously by generalizing the Peierls-Griffiths proof
about the two-dimensional Ising model [4,5,3].

The Ising model on a Koch curve, and consequently on
a PKL, can be defined in two ways. In the first way, the
interactions are restricted to nearest neighbors along the
curve, that is, to segments {ab ), {bc ), (cd ), and (de ),
but not along (bd ). In the second way, which is more

realistic, the nearest neighbors are defined on the whole
space, i.e., there is also an interaction on (bd ). We as-
sume that the nearest-neighbor interactions are isotropic,
i.e., that in the z direction (along {af)) is the same as
that in the xy plane (along {ab )). It is just the wiggled
two-dimensional Ising model on a square lattice in the
first case, and thus the Peierls-Griffith proof [4,5,3] ap-
plies directly if we use a non-Cartesian coordinate sys-
tem, one dimension of which is along the z direction,
another of which is along the Koch curves. Hence a
spontaneous magnetization is expected at a finite temper-
ature. In the following, a proof is given in the Cartesian
coordinate system (Fig. 1) in order to apply also in the
second case. Some parts of it are almost the same as
Refs. [5] or [3], but have to be reproduced for complete-
ness.

Consider an arbitrary configuration on the lattice.
Similar to what was done on a two-dimensional square
lattice [5,3], a domain wall is a continuous line drawn be-
tween up (+) spins and down (—) spins, since the topo-
logical dimensionality of a PKL is also 2. The length of
wall can be defined unambiguously as follows. It is the
relative z coordinates, and it is just the length of the line,
when the line is along the z axis, while it is the relative x
coordinates when the line is on a Koch curve. Any point
on the PKL can be characterized by x and z coordinates.
The domain walls are drawn in the conventional sense,
i.e., to let — spins always lie to the right of the wall and
=+ spins to the left. Where there is an ambiguity, it bends
to the right.

The probability P{s}
configuration {s} is

e ~PEls)

Se —BE{s} °’
{s}
where the sum extends over all configurations. For any

configuration, the average magnetization per spin is
defined as

of occurrence of the

P{s}= (©)

=N 7

N ) (7)

where N, and N_ are the number of + and — spins in

the configuration. Obviously the average of M taken over

all configurations weighted with probability (6) is zero

due to symmetry. Following Griffiths [5], we define the
spontaneous magnetization by

M°=N‘TL<IM|) , (8)

where the angular brackets denote the thermal average.
Also, we shall prove that, at sufficiently low temperature,

(IM|Y=M,>0, 9)

independent of N.

As the first step, we impose the boundary condition
that all spins on the boundary are +, and obtain an
upper bound to N_, and thus a lower bound to (M ), in
this case. Now every domain wall is a closed curve. Con-
sider the set of all closed domain walls. They are
classified according to length b, and each is given a num-
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ber i within a class of given length. Thus any domain
wall is uniquely characterized by a label (b,i). There are
various distributions between the lengths in z and x direc-
tions for a certain b, constrained by

2(x +z)=b . (10)

The number of — spins inside a closed curve is just the
volume enclosed,

V=x%z, (11)

where D is the fractal dimensionality of the Koch curves.
From (10), we may find that
D+1 Y

(D +1 )D + 1‘ .

b

2

V=

(12)

The number of domain walls of length b is bounded by [5]

4N3°
b)= . (13
m(b) 3b )
Every — spin is enclosed by at least one domain wall,

since the spins on the boundary are all +. In a particular
configuration, let X (b,i) be 1 if the domain wall (b,i)
occurs in that configuration, and O otherwise. Then in
this configuration the number of — spins satisfies

D+l pP m(b)

= 3 X(bi).  (14)

N___ e
(D+1) !

5 |2

The thermal average of X (b,i) is
(X(b,i))=3'P{s}, (15)
st

where the prime indicates that the sum is restricted to
those configurations in which (b,i) occurs. If C is a
configuration in which (b,i) occurs, let C* be the
configuration obtained from C by reversing every spin in-
side the domain wall. Their energies are related by

Ec=E_x+ae(xP+2) (16)

for the Ising model defined in the first way, i.e., without
interaction on {(bd ). € is the nearest-neighbor ferromag-
netic interaction. In the Ising model defined in the
second way, there are perhaps two nearest-neighbor in-
teractions, e.g., those along {bc ) and also (bd ), across
the wall in the z direction. In this case, one should have

E s +4e(xP+2)SEc<E «+a4e(xP+22) . (7D
Since D = 1, one obtains in any case

EcZE_x«+2eb . (18)
Hence we may find an upper bound on { X(b,i)),

(X(b,i)) e b (19)

Taking the thermal average of (14), we obtain

D +1 B
<N )52 P_ DD éb___e'zﬁeb

’ 2 (D+1)D+1 b
<L p23t, —28eb
— 3%
“62?
8 Kk? 3k |, K

=2 1__.+_
Ja-«? | 4 4 20

provided k=9¢ ~%*%_ We have used the fact that D <2.
The above ratio is independent of N and, for example, is
less than . for sufficiently large but finite 3.

Now let us turn to estimate {|M|) without imposing
constraints upon boundary spins. Each domain wall
divides all the spins on the lattice into two sets, that lying
to the right and that lying to the left. If it is closed, one
set of spins lies inside it and one set lies outside. If it is
not closed, we define the smaller of the two sets as lying
“inside” and the larger as lying outside. If the two sets
contain equal numbers of spins, the set to the right of the
wall will be said to be “inside.” There are at most
DP[b/(D+1)]°*! spins lying inside a domain wall of
length b. An upper bound to the probability of oc-
currence of the ith domain wall is again given by (13).
The configurations may be divided into two classes, in
those belonging to one of which, denoted by A4, all spins
lie inside some domain walls. In configurations belonging
to the other class, denoted by B, there is at least one —
spin which lies outside all domain walls, hence all +
spins lie inside at least one domain wall. Therefore

<|M|)=2|M{SHP{S}

Z%{A]M{s}P{s}—

1
—1— L | S [AIN_{s]P{s]
N isl
+3 1 {s}P{s} |, 21
is}
where M{s}, N_{s}, and N, {s} are the quantities in

the configuration {s} and 3 ;[ 4] and 3 ,;[B] denote
sums over configurations of class A4 or B. For
configurations in class 4,

> X(b,i) . (22)

N <2 - -
(D+1PH &

The same inequality holds for N, for all configurations
in class B. Therefore

S N_{s|P s;+§N+3s}P1s}

D m(b)
bD+l D

bt 27 "y
(D+1)P+H &

IA
|-¢- @M

IA

2 b23be —2Beb
b

2 2
L SN SHN PR L (23)
3 (1—«)? | 4 4

A W
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with k=9¢ ~%%¢. Thus, if the temperature is low enough,
we obtain a lower bound of the form (9), independent of
N.

Such is our proof. If the interactions are anisotropic,
i.e., that along (af) is different from that along (ab),
the inequality (18) is still valid given € as the smaller one.
hence the above proof still applies. Also, the proof may
be generalized to other bifractals whose subfractal on the
xy plane is one of the other quasilinear lattices. In an
earlier discussion on Ising model on the PKL using a
bond-moving approximation [13], an indication was
found that T, is nonzero.

VI. SUMMARY

In this paper, we address under what conditions phase
transitions occur at finite temperature on general graphs,
such as fractals. This is determined by the geometric
(fractal dimensionality d) together with the diffusion
(dimensionality of random walks d,,), and thus the dy-
namic (spectral dimensionality d) properties of the lat-
tice. In a Euclidean lattice, the dimensionality of the ran-
dom walk is trivially 2, while the dimensionality of space
is identical with the fractal and also the spectral dimen-

sionality. Hence one might misunderstand that the value
of dimensionality of space determines if phase transitions
occur at a finite temperature. Studies on phase transi-
tions on fractal lattices clarify this matter and confirm
that it is long-wavelength modes that dominate phase
transitions. Generalizing some famous arguments, we
have shown that, on finitely ramified lattices, the
sufficient and necessary condition for phase transitions to
occur at finite temperature is, respectively, that d > 2 and
d>d,+1 in models with discreet and continuous sym-
metries. T, is always nonzero on infinitely ramified sys-
tems. The spectral dimensionalities of fractal lattices
usually studied are less than 2; hence T, was found to be
zero on finitely ramified fractals. We point out that d >2
can be satisfied on a class of self-affine fractals, the bifrac-
tals, which are Cartesian products of two fractals. Be-
cause of the absence of global scaling for random walks
on a bifractal, the condition d 2 d,, + 1 should be general-
ized to a more general one where the dimensionalities of
two subfractals are involved. As a test of the results
presented here, we will study in detail phase transitions
on bifractals. It is also interesting to study the field-
theoretic correspondence.
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